Register Login Contact Us

I would about hunt for guy all ladies Its

Delayed motherhood has often been ascribed to sociological factors, but new findings show a genetic component, which also links to of children.

Its All About Genetics Ladies

Online: Now


My boyfriend has 3, possibly 4 boys from a marriage, but no girls. I am now pregnant and am wondering if I am more likely to have a boy?

Name: Adda
Age: 31

Views: 8464

Gender differences and sexual preferences are frequently a point of conversation.

Women’s contributions to early genetics studies were relegated to the footnotes

What produces the differences between men and women? Are they trivial or profound? Are they genetic or environmental, or both? Some people claim that, genetically, men are more closely related to male chimpanzees than to women.

But the key to difference between men and women — and chimps — lies not just in the of their differing genes but in what these genes do. Let me first explain a bit about genes and chromosomes.

Genetics plays role in deciding at what age women have first child, says study

Mammals all vertebrates, in fact share pretty much the same collection of about 20, genes. Our 20, genes are arrayed on about a metre of DNA the genomewhich is cut up into smaller pieces, which we can see down a microscope as chromosomes when they coil up to divide. The base sequence of genes can differ slightly from person to person, and differ a lot from species to species.

We all have two copies of the genome, one from mother and one from father, so there are two copies of each chromosome — except for the sex chromosomes. Women have two X chromosomes. Men have a single X from their mother and the male-specific Y from their father.

The genetic differences between men and women lie in these sex chromosomes. The X bears more than 1, genes. But the Y has only 45, which are all that are left of a once ordinary pair of chromosomes that differentiated to be the X and the Y. But the Y chromosome is not all male-specific; 24 genes in its top little bit are shared with the X. The rest of the Y lost most of its genes over million years of evolution. Indeed, there are only 27 active protein-coding genes on the male-specific part of the Y, although several are present in multiple copies most of which are inactive.

A little background

Nor can we count all 27 because at least 17 have copies on the X chromosome too. Most of these 17 remain dedicated to their original purpose, backed up by their X copy. Only three have diverged to acquire male-specific propertiessuch as making sperm. The remaining ten genes on the human Y have no copy on the X. They are specific to males, so could contribute to differences between men and women. Some of them started off as copies of genes on the X but diverged far from their original function and acquired male-specific roles.

More information

Three originated as copies of genes on other chromosomes that were important for male functions. So the total of genes possessed by men and completely absent from women may be as low as 13 and no greater than 27 out of a total of 20, human genes. But hidden in this junk are sequences that are copied into long RNA molecules but are not translated into protein. At least some non-coding Y genes may have important roles in regulating sex differentiation genes, though this has not yet been demonstrated. Even more intriguing is new evidence that among the junk DNA on the Y chromosome of the bull are sequences that work to skew the ratio of sperm that bear the Y chromosome, favouring the birth of male calves.

When these sequences are deleted, the skewing goes the opposite way, favouring female calves. This suggests that the X chromosome, too, has some tricks to get preferentially into sperm. A rarely recognised difference between the genomes of men and women is the different copy of the more than 1, protein-coding genes on the X chromosome.

There are two copies of these in women and one in men. Differences in X gene dosage have been ignored because they were supposedly compensated for by a mechanism that silences all the genes on the whole of the X chromosome in females. Known as X chromosome inactivationthis mechanism silences one or other X in the cells of the embryo, and this silencing is passed on into groups of cells in the adult.

But now we know that more than genes escape inactivation on the human — but not the mouse — X. And independent of sex, the of X chromosomes has profound effects on some basic metabolic pathwayssuch as fat and carbohydrate synthesis, which may underlie sex differences in susceptibility to many diseases.

Some will code for proteins that are critical for life, or for sex. Others might have only a minor effect, or no visible effect at all.

In fact, the effects of at least some of these genes are profound. The male-determining SRY gene, for instance, kick-starts a cascade of dozens of genes that are either turned on in male embryos or turned off in female embryos during testis or ovary development.

Female orgasm all in the genes

Most of these genes are not on sex chromosomes, so they are present in both sexes. But they are turned on to different extents — or at different times or in different tissues — in males and females. Male hormones, such as testosterone, are synthesised by the embryonic testis and have far-flung effects all over the developing body. Androgens turn on hundreds maybe thousands of genes that determine male genitalia, male growth, hair, voice and elements of behaviour.

Is it a boy or a girl? the father’s family might provide a clue

But this often-quoted difference is an average over the whole genome, only a minority of which consists of genes that code for proteins. It tells us little about which genetic differences are important. Many obvious differences between humans and chimps, such as hairiness and perhaps even speech, may result from tiny alterations in one or a few genes.

Differences in timing, or minor regulatory differences, may have massive effects on growth and development. How these genes are regulated and their downstream effects are what make the difference between men and chimps, or men and women.

The genetic difference between men and women could be greater than we thought

Conversational experiments: some reflections on Sperber and Mercier — Reading, Reading. Edition: Available editions United Kingdom.

Jenny GravesLa Trobe University. A little background Let me first explain a bit about genes and chromosomes.